

FMS500 LIGHT+

GPS/GLONASS VEHICLE TRACKER

User manual Version FMS500

Contents

1.	\mathbf{F}	MS500 Light+ general device information	3
	1.1.		
	1.2.	Description	3
	1.3.	Package	3
	1.4.	Technical specifications	4
	1.5.	Physical properties	5
	1.6.	Pinout & diagnostic LED	7
	1	.6.1. Pinout	7
	1	.6.2. Diagnostic LED	9
	1.7.	Installation	.10
	1.8.	Configuration	.10
	1.9.	Support	.10
	1.10	Document versions	.10
2.	A	Annex 1. Installation instructions	1
3.	A	Annex 2. Configuration manual	16
	3.1.	BCE Device Configuration Manager	.16
	3	.1.1. Users and Dealers	
	3	.1.2. Devices and Retranslators	.18
	3	.1.3. Firmware	. 24
	3	.1.4. GSM operator groups	. 25
	3	.1.5. XML settings	.26
	3	.1.6. Device logic	
	3	.1.7. Function signals	.30
	3	.1.8. Functions	.31
	3	.1.9. Configuration examples	
	3	.1.10. Geozones and Geozone groups	
	_	.1.11. Dallas ID lists	
		.1.12. Dataset7_Mask1 description table	
	3	.1.13. Dataset7_Mask2 description table. FMS-CAN (J1939)	
		.1.14. Dataset7_Mask3 description table	
		.1.15. DataSet7_Mask4 Description table	
4.		Annex 3. Connecting additional sensors. Wiring diagrams	
		LS fuel sensor (one sensor, frequency mode)	
		LLS fuel sensor (two sensors, frequency mode)	
		LLS fuel sensor (one sensor, analog mode)	
		LLS fuel sensor (two sensors, analog mode)	
		LLS fuel sensor (EIA 485/ RS485)	
	6.	LLS fuel sensor (RS232)	
		Button	
		I-WIRE temperature sensor	
		ES4 fuel level sensor connection via RS485	
	11.	ES2 fuel level sensor connection via RS232 (one sensor)	.56

1. FMS500 Light+ general device information

1.1. Safety and legal information

Do not disassemble the device.

May interfere operation of adjacent electronic devices.

Device may be damaged by water and high humidity.

Installed by qualified professionals only.

Copyright © Baltic Car Equipment, Ltd. All rights reserved. Reproduction, transfer, distribution or storage of part or all of the contents in this document in any form without prior written permission of Baltic Car Equipment is strictly prohibited.

1.2. Description

FMS500 Light+ is a device with GPS/Glonass and GSM connectivity, designed for object tracking. It is able to acquire information on object location, speed, direction, etc. and transfer the data via GSM network. Digital and analog inputs of the device may be used to connect different external sensors/devices. Outputs of the device may be used to control external equipment remotely.

Flexible configuration allows users/dealers to adjust the device to meet their specific requirements. All device settings and firmwares are updated remotely via GPRS. It is possible to create setting templates for groups of vehicles, use mass updates and create unique device operation logic, fulfilling requirements of most cases on the market.

1.3. Package

FMS500 Light+ is shipped to a customer in a cardboard box and contains all required components for operation, except a SIM card. Package contents:

- 1. FMS500 Light+ device (control unit)
- 2. Wires + fuse

Note. SIM card is not included, but is necessary to operate the device. Contact your local GSM operator to purchase a SIM card. BCE recommends an M2M SIM card for best performance and reliability.

1.4. Technical specifications

Table 1. FMS500 Light+ technical specifications

General	
Interfaces	1-Wire
	RS-232
	EIA-485
Inputs	4x digital (frequency, impulse counter, ON/OFF modes)
	3x analogue, 11 bit, 0-36V
Outputs	3x digital, (-)
Power supply	8-31V
	Protection from impulses up to 150V
	Consumption at 12V: active: <50mA, sleep: <8 mA
	Registration of power cut-off to device event log
	Internal battery 700 mAh (optional)
Internal memory	4 MB, up to 150.000 entries
Accelerometer	3 axis digital accelerometer
Internal odometer	+
Operational temperature range	from -40 to +85 C°
Dimensions	68x90x19 mm
Weight	Tracker – 64 g, set – 160 g
GSM	Internal antenna
GSM/GPRS class	10 (up to 85,6 kbit), class B
Detection of GSM jamming	+
	Total and a section of
GPS / GLONASS	Internal antenna
Sensitivity	-162 dBm
Acquisition	Cold <30 s, hot 1 s. A-GPS support

1.5. Physical properties

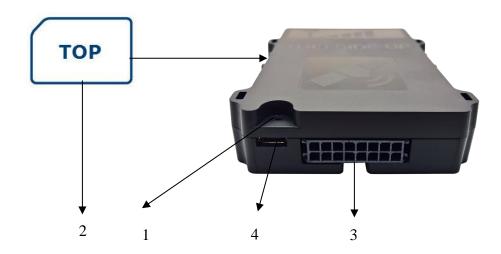


Fig. 1. FMS500 Light+ front view.

Note. To insert a SIM card, open the box by lifting plastic holders from both sides.

Table 1. FMS500 Light+ components.

No.	Short description
1	Device and GPS status LED
2	SIM card
3	Socket 2x8 pins
4	USB interface

Fig. 2. FMS500 Light+ dimensions, mm

1.6. Pinout & diagnostic LED

1.6.1. Pinout

OUT2	OUT1	ADC3	IN4	GND	Battery+	RS232(TX)	RS232(RX)
Orange	Orange/black	White	Blue/black	Black	Red	Purple	Blue
OUT3	ADC5	1-WIRE	IN5	IN3	IN2/ADC4	RS485 (B)	RS485 (A)
Yellow	Yellow/black	Brown	Grey/black	Purple/black	White/black	Green	Green/black

Fig. 3. FMS500 Light+ pinout and cable colors.

Electrical properties of the device are shown in Table 2.

Table 2. FMS500 Light+ electrical properties.

ADC Power supply multiplier (adc2)	0.001V +-1.5% ADC 11bit
ADC 3 multiplier (adc3)	0.001V +-1.5% ADC 11bit max 40V
ADC 4 multiplier (adc4)	0.001V +-1.5% ADC 11bit max 40V
ADC 5 multiplier (adc5)	0.001V

	+-1.5% ADC 11bit max 40V
OUT1 (-)	1.7A
OUT2 (-)	1.7A
OUT3 (-)	1.7A
Power supply, min start up voltage	10V
Power supply, min operating voltage after start up	6V
Power supply, stage1	30V
Clamping voltage clamping type	31V varistor
IN2,IN3,IN4,IN5 Max measuring frequency, accuracy	Input impedance 0.4Mohm 3Khz, +/-1Hz
IN2, IN3, IN4, IN5 voltage threshold	4.7V, +/-3%

1.6.2. Diagnostic LED

FMS500 Light+ has an indication LED – for GPS and GSM modem status. LED starts flashing only if IN5 digital input is connected to battery +.

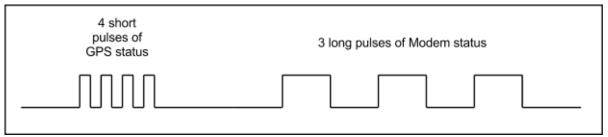


Fig 4. LED flash signal. Example.

Table 3. Short flash meaning. GPS status.

Short flashes count	Meaning
1	No GPS signal
2	Poor precision. HDOP>1.5
3	3 satellites locked. HDOP<1.5
12	12 satellites locked. HDOP<1.5

Table 4. Long flash meaning. GSM modem status.

Long flashes count	Meaning
1	Modem connected to server, Modem connected to Internet, Modem GPRS registered, Modem GSM registered, Modem SIM card ok, Modem turned on
2	Modem connected to Internet, Modem GPRS registered, Modem GSM registered, Modem SIM card ok, Modem turned on
3	Modem GPRS registered, Modem GSM registered, Modem SIM card ok, Modem turned on
4	Modem GSM registered, Modem SIM card ok, Modem turned on
5	Modem SIM card ok, Modem turned on
6	Modem turned on
7	Device started

1.7. Installation

FMS500 Light+ is installed where risk of mechanical damage, high humidity and extreme heat is low. Device is mounted stable to vehicle body, therefore ensuring correct operation of the internal accelerometer. Complete installation manual is available as Annex 1.

1.8. Configuration

FMS500 Light+ is to be configured via a configuration server, where dealers/users can adjust operation of their devices to fulfill specific requirements. Configuration manual is available as Annex 2.

1.9. Support

FMS500 Light+ is built to be a reliable, stable and easy to install device. Please read and follow provided installation and operating instructions carefully. However, if you encounter difficulties while installing or using this product, technical support is available and may be reached by e-mail support@bce.lt or tech_support@bce.lt.

1.10. Document versions

Table 5. Document versions

Version	Date	Changes	
1.0	2017-07-04	Document created.	

2. Annex 1. Installation instructions

List of suitable vehicles

FMS500 Light+ is intended for all vehicles with petrol or diesel engines, where negative pole is body of the vehicle. Device must be connected to the vehicle battery, ensuring constant power supply even if the engine is not working and ignition is off.

When active, FM Light+ uses a small amount of direct current (DC) – less than 50 mA at 12V. It can be mounted in 12 V or 24 V vehicles.

Standby mode

This is a mode of the device when the vehicle ignition is turned off, and there are no active alarms. In this mode, the GPS receiver is switched off in the control unit (in order to reduce power consumption) and communication with the server intervals are increased. Device switches to active mode if programmed trigger is detected (for example accelerometer signal).

Active mode

This is a mode when ignition is on, or when any programmed trigger is active. In this mode, GPS receiver is enabled in the central unit and connection with the server is carried out more frequently. After ignition is switched off, the central unit remains active for another 10 minutes.

- Free configuration of data dispatch frequency is possible.
- During the data transfer (GSM / GPRS communications), short-term increase in current consumption of up to 100 mA is possible.
- Power-line (primary or back up battery) has to be connected via 1A fuses.

Basic instructions before beginning the installation

Quality of connections, location of the device, etc. play a significant role on accurate operation of the system. Below are some tips and rules for correct installation to attain professional quality and ensure maximum efficiency of the device.

Location for central unit installation

Central unit should be hidden in a difficult to access location to prevent unwanted interference by unauthorized persons. Small size and flat body makes it easy to do and allows use of small gaps for installation.

The device must be fixed in the vehicle in position where connectors are oriented to the ground. This will prevent moisture condensation inside the unit.

Electrical connections

Control unit must be powered by continuous voltage. When starting the engine, voltage cannot fall below 8 V. It is desirable that power supply for the device is connected to the factory cable led from battery terminals. This allows operation of the unit despite of failure of any vehicle fuses.

Mechanical connections

To highest possible extent, cavities in the vehicle should be used for wiring. If you need to make a new hole, it must be protected against corrosion appropriately!

Wiring connection must be made by brazing, and not merely mechanical wire connection. It is especially important to protect the connections with insulation for high-resistance atmospheric conditions. Do not use insulation with unknown resistance parameters.

Efforts should be made to tie the new wiring into the car's standard wiring bales.

Installation of central unit

Steps to install central unit:

- Insert a SIM card into the device:
- Install central unit:
- Connect power supply;
- Connect array;
- Connect ignition wire to a digital input (usually IN5);
- Connect other devices (optional).

SIM card

SIM card must be inserted into the device before starting installation. The device must be turned off when inserting SIM card. Before inserting the SIM card, make sure you have activated GPRS connection, the card's PIN code must be disabled.

If the vehicle is travelling to foreign countries, roaming service must be activated for the SIM card. The SIM card and phone number must be checked and clearly marked on the installation certificate of the device.

IMPORTANT! Before inserting a SIM card, do not forget to disable PIN code. Otherwise, the device will not work, and the SIM card will be blocked.

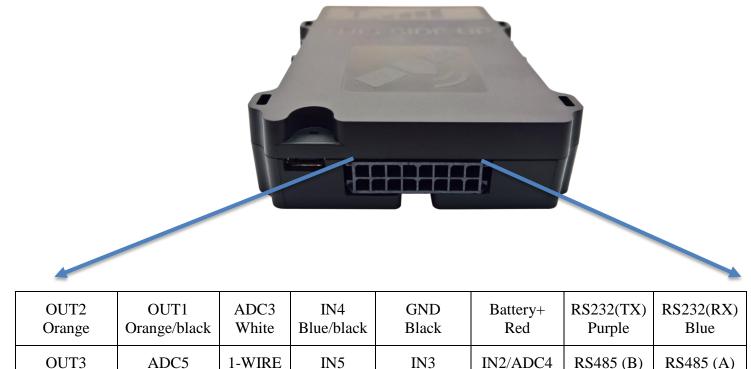
GPS antenna

GPS antenna is the main element responsible for vehicle positioning accuracy and quality. FMS500 Light+ units are equipped with internal GPS antennas. To ensure best possible GPS signal reception and evaluating GPS signal character, there are strict requirements for correct installation of the tracking unit:

- The accordingly marked side of the device must be invariably directed to the sky. The device
 must be oriented horizontally (not at an angle) and oriented with the corresponding side towards
 the top.
- The device should not be covered with metal sheet or reinforced glass. In vehicles with standard glass (e.g., without built-in heating elements).
- Fixing of the device must be stable and immobile, providing for the installation durability. It is
 necessary to take into account events, which may lead to loss of device stability, to select the
 mounting location and methods that would allow to avoid these factors.

GSM antenna

GSM antenna is responsible for transfer of collected data and connection with central server. Good antenna's performance is the key element in obtaining information from the device. FMS500 Light+series trackers are equipped with internal GSM antennas.


GSM antenna does not require orientation to open sky; however you should be aware that metal elements weaken the GSM signal. It is also necessary to take into account the emission of the antenna's high frequency radio waves, which may interfere with operation of electronic devices.

Device installation

Central unit is only mounted in inside of the vehicle, it can not be installed in the engine chamber, next to the cabin, or in the area of exposure to direct external conditions. Central unit must be hidden (for example, under the upholstery), as well as protected from moisture exposure. Device must be fastened in a stable position to avoid random twitches and displacements (suspension on cables is strictly prohibited). Central unit must be mounted horizontally. Precise orientation is of particular importance to flawless operation of the system, since the device is equipped with acceleration sensors recording the data which directly affects the results obtained. Pinout and cable colors are shown in figure 1.

Purple/black

White/black

Annex 1. Fig. 1. FMS500 Light+ pinout.

Brown

Grey/black

Yellow/black

Yellow

Green

Green/black

Power supply

Power supply of central unit has to be connected directly from the vehicle's battery, using 1A fuse.

IMPORTANT! Power supply may be connected to the central unit only after connecting GSM and GPS antennas! When disconnecting the device, you must first turn off the power supply, and only then disconnect the antennas!

Ground wire

Ground wire should be connected to the vehicle body. A reliable electrical contact with the body must be ensured, wire has to be bolted.

Ignition input (combustion lock status)

Connect a wire of the vehicle where voltage is present only when ignition is activated to IN5.

Universal digital inputs (optional)

Universal Digital inputs (IN2; IN3; IN4; IN5) are intended to collect data from remote devices.

Analog inputs (optional)

Analog inputs are intended to collect data from remote devices by measuring voltage. ADC3, ADC4, ADC5 range 0-40V.

3. Annex 2. Configuration manual

3.1. BCE Device Configuration Manager

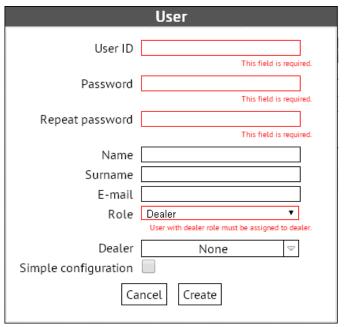
BCE Configuration Manager is a web based service for adding new devices, changing device settings, firmware, operators, creating retranslations and more. This service allows you to configure and manage your devices remotely.

You may access it at www.fmset.eu if you have an account. Once you log in to the website, Home screen will appear. In this page you can find useful information about Baltic Car Equipment products:

- User manuals;
- Hardware revision code description and pinout;
- Event meaning list;
- Status LED flash meaning;
- Master SIM card;
- Warranty application form.

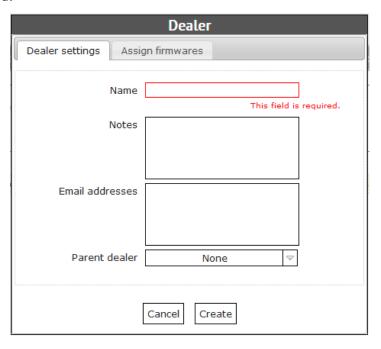
BCE configuration manager includes the following tabs:

- 1. Home:
- 2. Users;
- 3. Dealers;
- 4. Devices;
- 5. Firmwares:
- 6. GSM operator groups;
- 7. XML settings;
- 8. Geozones;
- 9. Geozones groups;
- 10. Dallas ID groups;
- 11. Device logs;
- 12. Audit info (for administrators only).


3.1.1. Users and Dealers

Each dealer has a user account and can control all his devices via BCE Device Configuration Manager.

You may create new user accounts. The fields which are marked red must be filled (user ID, password, role), other fields are optional (see Picture 1). A dealer must be assigned to every user. It should be created in dealers tab first.



Picture 1. User creation window

Dealer is necessary for proper device management in the configuration system. Your dealer and user will be created by Baltic Car Equipment team, when you start using configuration manager. If the dealer has a network of dealers, he can control the sub-dealers and their devices. While creating a dealer, your dealers name will be filled automatically in "parent dealer" field. Quantity of sub dealers is not limited.

Picture 2. Dealer creation window

After creating the devices you can change the dealer for one or a group of them. In the "Devices" tab select the devices you want to change the dealer for, click "Transfer selected devices", select the dealer you need and click "Transfer".

3.1.2. Devices and Retranslators

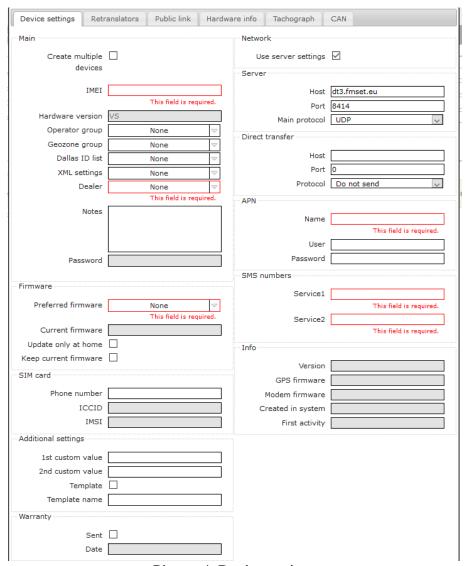
In the "Devices" tab you can change main device parameters and see it's status.

First step is creating new device. Select hardware version (S version) and press next.

Device settings window will appear (Picture 4). Fill in the required fields:

- 1. IMEI number. It is printed on the device.
- 2. Operator group. It is optional. Detailed description in chapter 6.
- 3. Geozone group. Optional. Detailed description in chapter 6.
- 4. Dallas ID list. Optional. Detailed description in chapter 6.
- 5. XML settings. Will be explained with details in chapter 6.
- 6. Dealer. If You have sub-dealers, you can assign devices to particular dealer.
- 7. Notes. Optional, usually hardware version filled.
- 8. Preferred firmware. Will be explained with details in chapter 6.
- 9. Phone number. Telephone number of the SIM card inserted in the device.
- 10. Network settings.
 - 10.1. Server. Host and port filled in automatically. Do not change it.
 - 10.2. Direct Transfer. Host and port of Monitoring platform.
 - 10.3. APN name. Must be provided by your operator.
 - 10.4. APN user. Must be provided by your operator. Often left "blank".
 - 10.5. APN password. Must be provided by your operator. Often left "blank".
 - 10.6. Service1 number. Telephone number to which device could send a message with its status.
 - 10.7. Service2 number. Telephone number to which device could send a message with its status.
- 8. 1st custom value. Additional settings field.
- 9. 2nd custom value. Additional settings field.
- 10. Warranty. Field must be filled when device is sent for warranty check.
- 11. Info. Useful information about device, GSM, GPS versions and creation date.

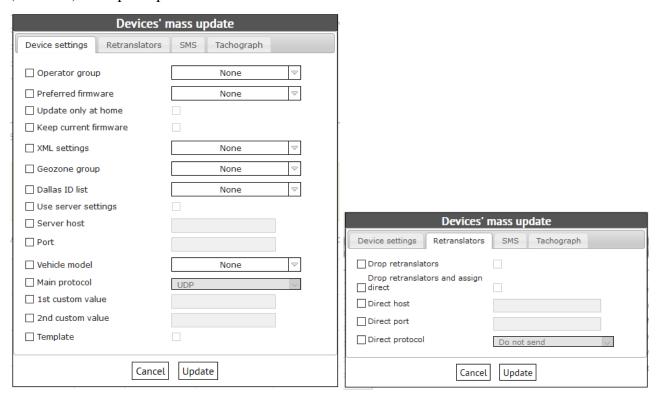
Note: If you want to create few units, which are the same type (FMS Light+) and will use the same settings, you can use function "Create multiple devices".



Picture 3. New device

Picture 4. Device settings

If you are creating many devices with same parameters, you can save one device as a template (put a tick in a checkbox "Template", Picture 4). Choose it from the "Template devices" (Picture 3), it will be in a drop box list sorted by IMEI.

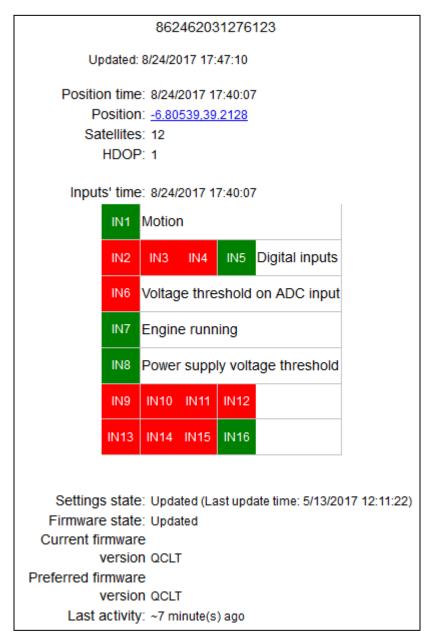

Once device is created you can easily find it by entering one or few search parameters.

There are few more useful functions in devices tab. When you click "Search" button in the "Devices" tab, you will generate a list of devices, on the left side of the IMEI you will see two symbols and a checkbox (Picture 5.)

Picture 5.

The checkbox is used for device transfer to another dealer (sub-dealer), or massive device update. Means you can update many devices at once and update more than one parameter at a time (Picture6.). All update parameters are described in Table 6.

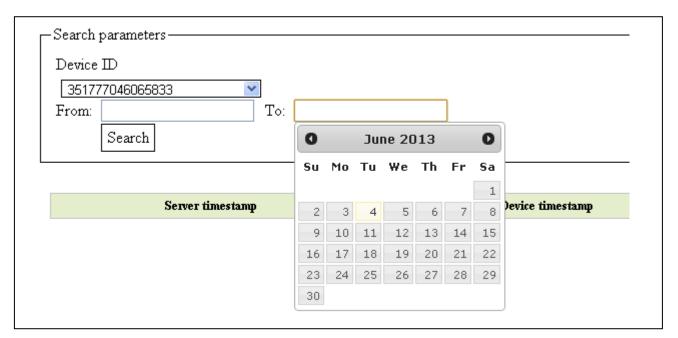
Picture 6. Mass update. "Device Settings" and "Retranslators" tabs.


Table6. Devices mass update

Parameter	Description
Operator group	Assigns operator group
Preferred firmware	Assigns firmware
Update only at home	If checkbox is marked, device will update firmware and settings only
	while connected to a home network
Keep current firmware	If checkbox is marked, when device connects to server for the first
	time, it will keep firmware which was uploaded to the device during
	manufacturing process
XML settings	assigns XML settings template
Geozone group	uploads selected geofences
Dallas ID list	uploads selected dallas ID list
Use server settings	enables server settings
Server Host	sets server host IP (default: dt1.fmset.eu)
Port	sets server port (default: 8412)
Vehicle model	Not active at the moment
Main protocol	device communication protocol (TCP/UDP)
1 st custom value	Custom value
2 nd custom value	Custom value
Template	If checkbox is marked, device is added to templates menu
Drop retranslators	If checkbox marked, deletes retranslators
Drop retranslators and assign direct transfer	If checkbox is marked, assigns IP and port which was set in
	retranslators tab to direct transfer and deletes the retranslator at the
	same time
Direct host	assigns host to direct transfer (monitoring platform)
Direct port	assigns port to direct transfer (monitoring platform)
Direct protocol	device communication protocol for direct transfer (TCP/UDP)
APN name	Access point name (address)
APN user	Access point name (user)
APN password	Access point name (password)
Service1 SMS number	service telephone number
Service2 SMS number	service telephone number
Use tachograph	Enables tachograph using for device
Card authentication server address	Address of Card authentication server
Card authentication server port	Port of Card authentication server
Data files server address	Address of Data files server

Data files server port	Port of Data files server
Use data files server to manage requests	Possibility to make request directly from Data files server
Activities of specified calendar days	Use to define period of DDD file. Default is 90 days.
Days	Duration of period for DDD file

The upper symbol is used to monitor device status (Picture 7).



Picture 7. Real time device state.

As we can see, main parameters are represented in this picture: IMEI; position time; coordinates; satellites count; HDOP; Input time and status (active/inactive); XML settings state; firmware state; last activity. This function is very convenient when you want to check device state fast and help with device surveillance.

The middle button (Picture 5.) will open device logs in new window (Picture 8).

Picture 8. Device logs

IMEI is picked automatically, you just need to choose period for which you want to see device logs and hit search button. Logs are represented in a code and has an explanation. These logs let our team to identify and solve various problems, which are related to our device or operator service.

Note. Only most important events are described in the logs.

By clicking lower button (Picture 5.) you are able to download configuration file to your PC. It includes all the Device Settings (such as Server configuration, APN configuration, SIM number, firmware and other) and XML settings. This file can be uploaded to the devices via USB.

Retranslators

If there is a need, for some tracking platforms, for proper data sending retranslators can be created (Picture 9). Retranslator type should be set and server address and port entered, f.e.:

Retranslator type – Wialon IPS

Server address – 193.193.165.165:20482

Picture 9. Retranslators

At the moment retranslator supports following protocols:

- FM Codec 8
- GPS Gate BCE generic
- Wialon IPS

3.1.3. Firmware

Firmware is the combination of persistent memory and program code and data stored in it. It provides the control program for the device.

Firmwares are created and uploaded by BCE team. They are sorted by device version.

KB – 4th hardware version VB – Basic line hardware version

LB – 4.5 hardware version VC – FM-One hardware version

MB – 5th hardware version VS – FMS hardware version

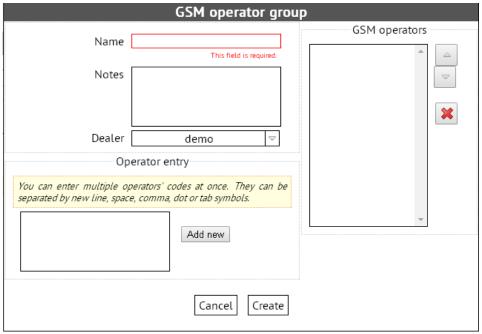
ZB – 5.4 hardware version VU – Tacho hardware version

QB - 5.5 hardware version

You can see in the notes what updates were made in specific firmware.

Version 🔺	Content size, B \$	Hardware check rule \$	Notes
MB65	111924	^VM	Fixed J1939 issue of MB64.
MB67	114340	^VM	New function to cycle network registration if internet connection failed. 1W9 bit temperature sensor support.
MB68	126820	^VM	Odometer fix. CAN functions test.
MB71	127412	^VM	J1708 fix causing module to reboot. Manufacturer specific CAN messages fix.
MB73	127780	^VM	Interrupt priority changed in J1708.
MB74	124548	^VM	Peugeot Boxer (11+).EMT and Travel sim apn detection. Beeline RU m2m apn detection.
MB75	124708	^VM	LLS Sensor reading on RS232.
MB76	124724	^VM	LLS Sensor reading on RS232 second edition.
MB77	124724	^VM	LLS Sensor reading on RS232 third edition.

Picture 10. Firmware list example



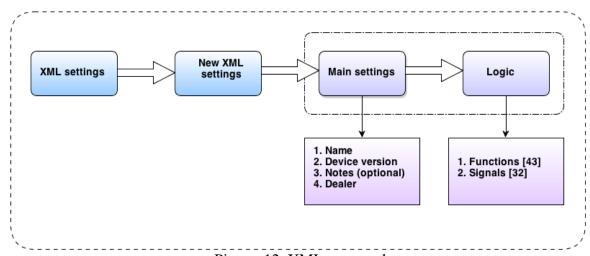
3.1.4. GSM operator groups

GSM operator group is used for more accurate device connection to operators. By setting up a group, you point device to connect to preferred operator from the list. There are two possibilities:

- 1. Create and assign operator group to device. When starting new operator search device will first try to connect to operator from the list, but if preferred operator is not available, device will connect to any other operator visible in that area.
- 2. Create and assign operator group to device, as well as set up function "2.1 F_InternetConnection" with value "Permit" only when preferred operator active. This way device won't connect to internet if connected to a non preferred operator.

As you can see in picture 11, you need to fill in groups name, set up a dealer, fill in some notes if needed and enter preferred operators codes. Code consists of five digits, first three digits stands for mcc (mobile country code), it depends on the country. Last two digits stands for mcc (mobile network code), it defines specific operator.

Picture 11. Operator group example

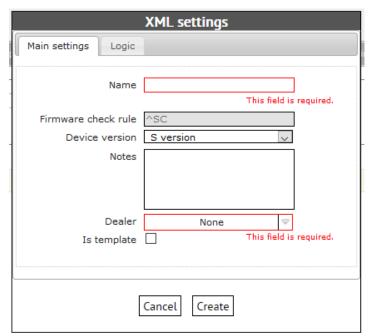

3.1.5. XML settings

XML settings may be uploaded to the device and used to tune it for the best performance and requirements of your system. You will find several prepared settings created by Baltic Car Equipment team. However, you may create settings that meet your specific needs. After the settings are ready, click Create.

XML settings template must be created and assigned to device in Device Settings (Picture 4). It helps you control your devices:

- Enable/disable preferred parameters
- Set data fix and data send periods
- Control physical and virtual inputs/outputs
- Set internal functions (timers, odometer, sleeping)
- Configure EIA485, RS232, 1-WIRE, CAN communication bus

XML settings template includes many functions and signal conditions, which makes device widely adaptable and allows you to obtain high functionality. Main steps of settings creation are represented in Picture 12.



Picture 12. XML set up scheme

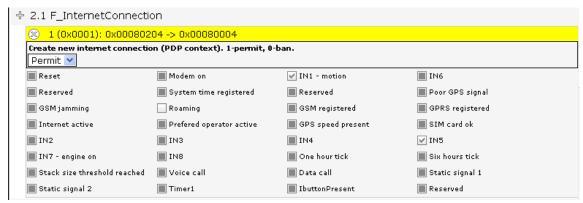
New XML settings

Picture 13. New XML settings main window

In the first window you must set up primary parameters: a) Name; b) Device version (optional); c) Notes (optional); d) Dealer

3.1.6. Device logic

When pressed "logic" tab, functions list will appear. By pressing "plus" symbol in the left side of the functions name, you will add parameters to every function. Parameters quantity is unlimited. As you can see in Picture14, parameters are represented in a code. This code refers to parameters value and its signal condition.



Picture 14. Logic template example

When you add a parameter, second step is to set its value and pick signal conditions (if needed). There are three possible conditions:

In the example below (Picture 15) you can see internet connection configuration. Value is set to "permit" if specific conditions are met (device is not in roaming network; IN1 – motion is detected; IN5 is detected).

Picture 15. Functions parameter

There are three possible value formats: a) drop box; b) check box; c) numeric value; d) Time interval (made specifically for "TIMER1" function).

All signal conditions and all functions are described in Table1 and Table2.

Once settings are created, you can easily find them using search tool. Two search filters are available: a) Name; b) Dealer;

In order to avoid the creation of settings from the beginning copy function was added. Open already created settings - "Duplicate" button will appear. This way you will be able to create many setting templates in a short time.

3.1.7. Function signals

Signal name	Signal description	
Reset	Turn on temporarily after the system is restarted to indicate the event	
Modem on	Modem of the device is enabled	
IN1 – motion	Virtual input, used for motion detection	
IN6	Virtual programmable input	
Timer3Threshold	Special structure for internal timer signal	
System time registered	The device has turned UTC time internally from GPS or internet	
Geozone inside	Internal, virtual signal for Geozones.	
Poor GPS signal	GPS signal does not meet the minimum requirements according to "F_GpsQualityMaxHdop" and "F_GpsQualityMinSat"	
GSM jamming	GSM/DCS jammer is detected and it is disturbing normal use of GSM/DCS service	
Roaming	Device is registered to a roaming network	
GSM registered	Device is registered to any network	
GPRS registered	Device is registered to GPRS data services	
Internet active	Device is connected to internet	
Preferred operator active	Device is registered to an operator from the preferred list	
GPS speed present	GPS speed detection over 10km/h	
SIM card ok	SIM card is inserted and PIN code removed	
IN2	Physical – digital input	
IN3	Physical – digital input	
IN4	Physical – digital input	
IN5	Physical – digital input	
IN7 – engine on	Virtual input, battery charging detected	
IN8	Virtual programmable input	
One hour tick	Every hour for 10 minutes period	
Six hour tick	Every six hours for 10 minutes period	
Stack size threshold reached	There is more data in stack than allowed	
Voice call	Voice call detected, settings locked for 30 minutes	
Data call	Data call detected, settings locked for 30 minutes	
Static signal 1	General first static signal	
Static signal 2	General second static signal	
Timer1	Special structure for internal timer signal	
IbuttonPresent	"Dallas key" detected	
Timer2Threshold	Special structure for internal timer signal	

Table1. Signal descriptions

3.1.8. Functions

Functions name	Description/value expression	
1.1 F_ModemPower	GSM modem power mode (on/off)	
1.2 F_GpsPower	GPS device power mode (on/sleep)	
2.1 F_InternetConnection	Create new internet connection (PDP context*). Possible values: permit – allows to create new internet session; ban – doesn't allow new internet session, after old one is destroyed from operator side; force disconnect – device destroys internet session immediately;	
2.2 F_ServerConnection	Controls connection to server (connect/disconnect after 10 minutes)	
2.3 F_DataSendPeriod	Period in which data is sent to server (automatic/custom)	
2.4 F_DataSendOnInputsChange	Mask of inputs which may generate data transmission without waiting period timeout (tick a check-box to select desired input)	
2.5 F_BroadcastMessagesPeriod	Broadcast messages without confirmation. Used for data fix and send to server, when frequent transmission is needed.	
3.1 F_GpsQualityMaxHdop	Maximum HDOP* of position to accept it to read (Recommended value – 35)	
3.2 F_GpsQualityMinSat	Minimum satellites count for acceptance to read it	
3.3 F_GpsReadPeriod	Period in which coordinates are read from GPS and put to internal track filter (never/value=seconds)	
3.4 F_MaxTimeBetweenTwoGpsPoints	Maximum time between two fixed points (never/value=seconds)	
3.5 F_GpsCourseChangeFix	Minimum course change for device to fixate it (value expressed in degrees)	
3.6 F_GpsSpeedChangeFix	Fixation of vehicles speed difference from the last set value (expressed in km/h)	
3.7 F_InputsChangeFix	Registers change of selected input state (tick a check-box to select desired input)	
3.8 F_MaxDistanceBetweenTwoGpsPoints	Maximum distance between two gps points. $Min - 0$; $Max - 65536$. Value = meters.	
4.1 F_Dataset7_Mask1	Selected data will be included into the data packet (chapter 3.1.12)	
4.2 F_Dataset7_Mask2	Selected FMS-CAN (J1939)* data will be included into the data packet (chapter 3.1.13)	
4.3 F_Dataset7_Mask3	Selected data will be included into the data packet (chapter 3.1.14)	
4.4 F_Dataset7_Mask4	Selected data will be included into the data packet (chapter 3.1.15)	

4.5 F_Dataset7_Mask5	Selected data will be included	ded into the data packet	
	General bit configuration (tick a check-box to select		
	desired function)		
5.1 E. Canaral Pit Confin	Battery charge	enables battery charge connected on ADC6 (just for 5.1 version)	
	Odometer	relative odometer	
	Disable position pinning	position pinning algorithm	
	Disable fuel approximation	fuel approximation on lv11-lv12 and c1-c4 parameters	
	Enable wiegand26	wiegand26 protocol for RFID readers	
	Reset Wiegand value	Conditions to reset wie parameter	
5.1 F_GeneralBitConfig	Disable events	system logs	
	Disable data sending	- disables data sending from flash (doesn't affect broadcast messages)	
	Enable CAN fuel	Useful for the vehicle	
	approximation	where fuel level from CAN is not stable	
	Reset Ibutton value	resets dallas_id_end parameter	
	Continuous odometer mode	Odometer value is summed up in device memory	
	IN6 source ADC5	To change IN6 from ADC3 to ADC5	
5.2 F_VibrationThreshold	Vibration (IN1) threshold (if value > selected threshold, IN1-motion=1). Used for detecting motion, recommended value - 200		
5.3 F_NotDeliveredDataThreshold		Stack size threshold to generate signal "Stack size threshold reached". Value expressed in bytes.	
5.4 F_In8VoltageThreshold	Power supply voltage threshold. Expressed in volts (if value > threshold, IN8=1)		
5.5 F_In6VoltageThreshold	ADC3 voltage threshold. Expressed in volts (if value > threshold, IN6=1)		
5.6 F_FrequencyCounterSelect	Input mask for counter – frequency mode (tick a check-box to select desired input mode). Used for sensors, to work in counter or frequency mode		
5.7.1 F_Can1FunctionSelect	Selects CAN function. Enables CAN bus reading. Possible values: J1939-FMS; J1939 OBDII*; J1939		

	T	
	FMS ACK; J1939 FMS request; J1939 FMS	
	(500kbps); List of light vehicles with CAN bus	
	support (periodically updated);	
5.7.2 F_Can2FunctionSelect	Selects CAN function. Usually used to read	
	Tachopgraph with FM Tacho.	
	RS485* function select. Enables RS485 input reading.	
5.8 F_EIA485FunctionSelect	Used for LLS*sensors and J1708*. ES4 sensor reading	
	– EPSILON fuel level sensors. RS485 Keypad. Tyre	
	pressure sensors.	
	LLS sensor reading – OMNICOMM fuel level sensors	
	connected via RS232; NMEA output – GPS	
	information transfer from our device to external	
	device; ES2 sensor reading – EPSILON fuel level	
	sensors; Terminal – device works like communication	
	terminal between monitoring platform and external	
5 0 F D C 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	device (sends information in text format); CAN LOG –	
5.9 F_RS232FunctionSelect	work with additional CAN bus module "CAN-LOG";	
	RFID TYP A – specific RFID card reader; ADP-400 C	
	- Rx input is used for communication between FM	
	Blue and ADP CAN alarm system (just for 5.4 and 5.5	
	FM Blue+ devices). "6 pin Light 1 Wire power	
	supply" function is to be used if connecting 1 Wire	
	sensors to the FM Light devices. Datacold temperature	
	reading. And more.	
5.a F_NewConectionsToInternetLimiter	Limits next possible connection to internet (value	
	expressed in seconds)	
5.b F_Timer1	Special structure for internal timer signal	
5.c F_Timer1_GMT	Used to set GMT value.	
5.d F_Timer2_Control	Special structure for internal timer signal	
5.e F_Timer2_Threshold	Time threshold expressed in seconds. Used with 5.d	
516 T_TIMETZ_TIMESHOID	function	
	Function for OUT1 output control. Works in six	
	modes: off1 – output disabled, but can be controlled	
	with GPRS commands; on (minus) – enabled; off2 –	
5.f F_OUT1_Control	disabled; long – long pulses – two long impulses; short	
	– short – short pulses – three short impulses; short –	
	long – short pulses – one short, one long and one short	
	impulse;	
5.g F_OUT2_Control	Function for OUT2 output control. Works in three	
	modes: off1 – output disabled, but can be controlled	
5.51_0012_conuoi	with GPRS commands; on (minus) – enabled; off2 –	
	disabled;	
	Function for OUT3 output control. Works in three	
5.h F_OUT3_Control	modes: off1 – output disabled, but can be controlled	
	with GPRS commands; on (minus) – enabled; off2 –	

	disabled;	
5.i F_DigitalInputsthreshold	Digital input (IN2-IN5) threshold. Min – 0; Max – 40. Value = volts.	
5.j F_GPS_Speed_Threshold	GPS speed threshold (GPS speed present). Value = km/h.	
5.k F_S1_Control	Static signal 1 status control (on; off; auto)	
5.1 F_S2_Control	Static signal 2 status control (on; off; auto)	
5.m F_Data_Delivery_Watchdog	GSM modem watchdog. Restart is executed if in the fixed period, server hasn't responded to the device.	
5.ma F_Timer3_Control	Special structure for internal timer signal	
5.ma F_Timer4_Control	Special structure for internal timer signal	
5.na F_Timer3_Threshold	Time threshold expressed in seconds. Used with 5.ma function	
5.na F_Timer4_Threshold	Time threshold expressed in seconds. Used with 5.ma function	
5.o 1W_Function	Method of activation and reading of 1Wire input	
6.1 Crash Pulse Lenght	Period of force acting a vehicle (ms)	
6.2 G1 force start value	Value of G power at starting point	
6.3 G2 force mean value	Average value of G power during 6.1 period	
6.4 F_Dataset4_Timeout	Period for registering analog inputs using digital filtering method	
6.5 F_Dataset51_Timeout	Period for registering FMS-CAN data	
6.6 F_Dataset8_Timeout	Type8 filter	
6.7 F_Sms_TrigerMaskRising	Sms mask value. Sending sms when changing from 0 to 1 (tick a check-box to select desired input)	
6.8 F_Sms_TrigerMask_Faling	Sms mask value. Sending sms when changing from 1 to 0 (tick a check-box to select desired input)	
6.9 F_Sms_NextSmsTimeout	Next sms timeout. Expressed in seconds	
6.a F_Sms_MaxSmsPerHour	Maximum sms per hour	
6.b F_AccelerationThreshold	Threshold of acceleration (G) generating "Modem On" signal	
6.c F_BrakingThreshold	Threshold of braking (G) generating "Modem On" signal	
6.d F_CorneringThreshold	Threshold of cornering (G) generating "Modem On" signal	
7.1 F_Device_Sleep	Conditions for device to go sleeping an waking up	
7.2 F_Sleep_Timeout	If in 7.1 is set to Wake up on Timeout	
7.3 F_Stay_awake_timeout	Time to stay awake after waking up after Timeout	

Table 2. Function descriptions

- HDOP horizontal dilution of precision. This gives an indication of precision of the position fix from GPS, based on the satellites it is currently using and its geometry.
- PDP context packet data protocol context is a term used in the mobile wireless network indicating a logical association between an MS (mobile station) and PDN (Public data network) running across a GPRS network. The context defines aspects such as routing, qos (quality of service), security, billing etc.
- FMS-CAN (J1939) "fleet management systems" interface is a standard interface to vehicle data of commercial vehicles. J1939 is a vehicle bus standard used for communication and diagnostics among vehicle components.
- OBD-II on board diagnostics, is an automotive term, referring to a vehicles self-diagnostic and reporting capability. The OBD-II standard specifies the type of diagnostic connector and its pinout, the electrical signaling protocols available, and the messaging format.
- EIA-485, also known as TIA/EIA-485 or RS-485, is a standard defining the electrical characteristics of drivers and receivers for use in balanced digital multipoint systems.
- J1708 standard used for serial communications between ECU (Electronic control unit) on a heavy duty vehicle and also between a computer and a vehicle.
- LLS Liquid level sensor

3.1.9. Configuration examples

- 5.1 F_GeneralBitConfig includes two functions:
 - a) Battery charge
 - b) Odometer

By ticking odometer checkbox, you enable/disable internal odometer, which is represented in device messages and can be used as mileage counter. Internal odometer was calibrated by our engineers on a referenced road and had a deflection of 0.2%.

Battery charge function is needed when external battery is used. When function is enabled, PLUS [+] signal is generated on the "EXT BAT" output. It is advisable to assign IN5 (ignition) condition to this function, that external battery would be charged only when vehicles engine is working.

5.3 F_NotDeliveredDataThreshold. Generates signal – stack size threshold reached. You can use this signal in any other function. Just set the limit of bytes and change condition of your preferred function (1. Not present; 2. Present).

Example:

Set the limit of threshold (10000 bytes). Select function 1.1 F_InternetConnection. Change signal (stack size threshold reached) condition to – "present" (picture4). Result: device connects to internet only when data limit in internal memory is reached.

5.7 F_CanFunctionSelect. Used for vehicles with CAN bus interface. Select the value from the list depending on protocol which is used in your vehicle.

Example:

J1939 FMS – message protocol for bus, truck and trailer market. Working without requests.

J1939 FMS Request – reading J1939 messages only with requests.

J1979 OBD II (On board diagnostics) – standard, that specifies the type of diagnostic connector and its pinout, the electrical signaling protocols available and the messaging format. Uses J1979 protocol.

J1939 FMS ACK – similar to other J1939 protocols, just makes confirmations for successfully transmitted data.

5.8 F_EIA485FunctionSelect. This function lets you control RS485 interface. It can be used for LLS sensor connection (up to 4 sensors), and Volvo/Renault CAN bus reading.

If you use LLS sensors, select value – "LLS sensor reading" (4.3 F_DataSet7_Mask3 functions parameters – "LLS group1" and "LLS group2" must be enabled).

"J1708 No FMS gateway" is used for vehicles without gateway, reading with requests. "J1708 FMS gateway reads CAN bus without requests.

5.b F_Timer1 function generates signal "Timer1", which you can use in any other function as its condition. As you can see in the function window, you can pick "work days" – days, when signal will be active, "Signal on time" – at this specific time signal is activated, "Signal off time" – at this specific time signal is deactivated.

This function could be convenient for clients, whose vehicles work at specific days and hours. Just set the time and change signal condition in preferred functions (f.e. 2.1 F_InternetConnection or 2.2 F_ServerConnection).

Function 5.c F_Timer1_GMT is used jointly for setting your time zone.

5.d F_Timer2_Control and 5.e F_Timer2_Threshold forms another set of programmable timer. Timer2 signal is generated and can be chosen from conditions list. Timer2_Control has the following values:

- a) Pause
- b) Time increment
- c) Time decrement
- d) Reset to 0
- e) Value at 60 sec.
- f) Value at 60 min.

Time increment – time increases every one second.

Time decrement – time decreases every one second.

Reset to 0 – timer is reset to 0.

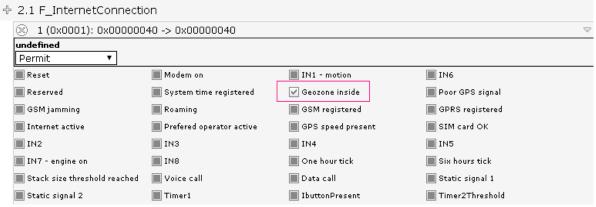
Value at 60 sec. – timer set for 60 seconds.

Value at 60 min. – timer set for 60 minutes.

Timer2_Threshold – is a limit expressed in seconds. Just set desirable threshold, pick a value in Timer2_Control and Timer2 signal is ready to use.

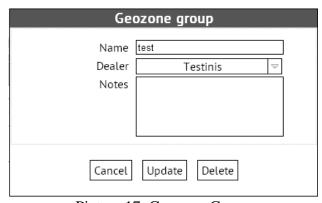
Example. Threshold is set to 40 seconds, value set at 60 seconds (when ibutton present), time decrement (when ibutton not present). It means that when device reads ibutton, timer is set for 60 seconds, user pulls back ibutton – time starts to decrement until reaches 40 seconds limit, then signal is deactivated. Signal is active for 20 seconds, you can use this time to control other preferred function (f.e. OUT1).

In this example three functions was combined. Often it will be used for complex operations.



3.1.10.Geozones and Geozone groups

This feature allows to upload Geozones (geofences) into internal device memory. Firstly, in Geozone group tab, a group of geozones must be created.

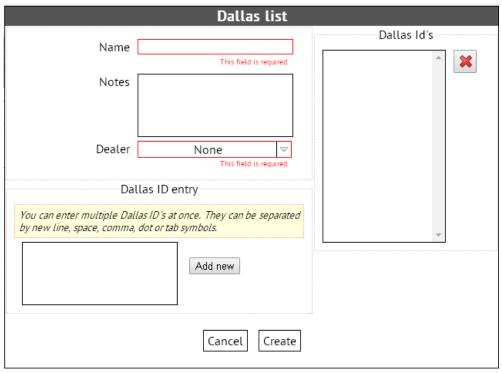

In Geozones tab, upload (import) your geozones to Configuration manager by clicking "Import geozones from KML". Select the geozone you need and ssigned to the group by clicking "Add selected geozones to group". Created group can be set for a specific device. In that way one or more Geozones will be uploaded to the device. After group is set for a device, function signal "Geozone inside" is ready to use (Picture16). Possible to configure any function depending on this signal (connect to internet/server; activate output; turn on/off GPS).

Picture 16. Geozone inside

Notes.

- Geozones can only be imported in KML format
- Geozones must be polygon type
- Device can write in its internal memory up to 2000 points
- Configuration manger will show number of points for a specific Geozone, its status (valid/not valid) and every zone size.

Picture 17. Geozone Group


BCE devices at the moment support operating in three types of zones: Geozone inside, Double geozone inside, Outside of geozone.

3.1.11.Dallas ID lists

This tool allows to create Dallas ID list/group, which will be uploaded to the device. Dallas ID is an identification number, usually used to identify drivers. This list of specific numbers allows device to recognize identification key and execute a command depending on it. Possible to enter one or more ID into the list(Picture18).

Picture 18. Dallas ID list

Notes.

- Dallas ID must be entered in HEX format
- One device can support up to 100 identification numbers
- Additional equipment must be connected to the device (1-wire reader)

3.1.12. Dataset7_Mask1 description table

Parameter	Description		
	This parameter i	ncludes:	
Coordinates	Longitude	HDOP	
	Latitude	Course	
	Speed	Altitude	
	Satellites	Odometer	
Digital inputs	IN1 – IN16. Cor	ntrol of physical and virtual digital inputs.	
ADC1	Reserved		
ADC2	Board voltage. S	hown as adc12 in wialon	
ADC3	Analog input. Pl	nysically shares same pin with OUT2.	
ADC4	Analog input. Pl	nysically shares same pin with IN2	
ADC5	Analog input		
ADC6	Battery voltage. Shown as adc16 in wialon		
ADC7	Reserved		
ADC8	Reserved		
c1,c2	Counter/Frequency parameters group. Represents IN2, IN3 inputs.		
c3,c4	Counter/Frequency parameters group. Represents IN4, IN5 inputs.		
LVL1	Used for analog sensors connection. Represents ADC3 input. Shows approximated value.		
LVL2	Used for analog sensors connection. Represents ADC4 input. Shows approximated value.		
	This parameter i	ncludes:	
	mcc (mobile country code)		
	mnc (mobile network code)		
GSM info	lac (local area code)		
	cell_id (ID of station to which device is connected at the moment)		
	gsm_lvl (strength of GSM signal [dBm])		
	ta (distance to nearest station)		

Table3. Dataset

3.1.13. Dataset7_Mask2 description table. FMS-CAN (J1939)

Parameter	Description		
Wheel speed	Speed of the vehicle as calculated from wheel or tail-shaft speed.		
Acceleration pedal	The ratio of actual position of the analogue engine speed/torque request input device to the maximum position of the input device.		
Total fuel	Accumulated amount of fuel	used during vehicle operation.	
Fuel level sensor	Ratio of volume of fuel to the	total volume of fuel storage container.	
Tachometer	Engine speed		
Engine hours	Accumulated time of operation	on of engine.	
Mileage	Distance travelled.		
Engine temp.	Temperature of liquid found i	in engine cooling system.	
Fuel level[2]	When Fuel Level 2 is used, Fuel Level 1 represents the fuel level in the primary or left-side fuel storage container.		
Engine load	Engine percent load at current speed		
Service distance	The distance which can be travelled by the vehicle before the next service inspection is required.		
	This parameter includes:		
	Driver1 working state	Driver2 working state	
	Vehicle motion	System event	
TCO1*	Driver1 time related status	Driver2 time related status	
1001	Driver1 card	Driver2 card	
	Handling information	Tachograph performance	
	Tachograph vehicle speed	Direction indicator	
	Vehicle overspeed	Reserved	
Air temp.	Temperature of air surrounding vehicle.		
Driver ID	Driver identification. The driver ID is only available if a digital tachograph is present		
Fuel rate	Amount of fuel consumed by engine per unit of time		

Table 4. Dataset Mask2

TCO1 - Tachograph

- Vehicle motion indicates whether motion of the vehicle is detected or not.
- Vehicle overspeed indicates whether the vehicle is exceeding the legal speed limit set in the tachograph.
- Driver card indicates the presence of a driver card.
- Driver time related status indicates if the driver approaches or exceeds working time limits (or other limits).
- Direction indicator indicates the direction of the vehicle.

- Tachograph performance indicates the tachograph performance; including electronic or mechanical analysis, instrument analysis, speed sensor analysis, mass storage analysis and printer analysis.
- Handling information indicates that handling information is present.
- System event indicates that a tachograph event has occurred. This may include power supply interruption, interruption of the speed sensor, incorrect data on the driver card, driving without a driving card, illegal removal of a driver card, insertion of a driver card during driving, and time adjustment.

3.1.14. Dataset7_Mask3 description table

Parameter	Description	
J1939 fuel economy	Current fuel economy at current vehicle velocity	
I1020 fuel consumption	Accumulated amount of fuel used during vehicle operation. High	
J1939 fuel consumption	resolution used for calculations and fl	eet management systems.
J1939 axle weight	Total mass imposed by the tires on th	e road surface at the specified axle.
J1939 mil status	malfunction light	
J1939 DTC1-10	Not used yet	
	This parameter includes:	
	Armed	Locked
	Drivers front door	Drivers back door
	Passengers front door	Passengers back door
CarInPhone	Bonnet	Trunk
	Alarm	Shock sensor
	External	Tilt sensor
	Original alarm	Ignition
	Service	Ignore
1-Wire ID	Connection for i-button	
1-Wire Temp	Connection for temperature sensor	
1-Wire Humidity	Connection for humidity sensor	
LLS Group1	LLS sensor parameters	
LLS Group2	LLS sensor parameters	
	This parameter includes:	
	Malfunction indicator lamp	calculated engine load value
	Engine coolant temperature	Fuel pressure
	Short term fuel trim bank1	Long term fuel trim bank1
J1979 Group1	Short term fuel trim bank2	Long term fuel trim bank2
31979 Gloup1	Intake manifold absolute pressure (MAP)	Engine RPM
	Vehicle speed	Intake air temperature
	MAF (mass air flow) air flow rate	Throttle position
	Fuel level input	Fuel rail pressure
J1979 DTC1-10	Not used yet	·
	This parameter includes:	
11700 0 1	Engine hours	
J1708 Group1	Total fuel used	
	Fuel level	
Driving quality matrix	Special parameters for driving quality	vevaluation

Table 5. Dataset

${\bf 3.1.15.\ Data Set7_Mask4\ Description\ table}$

Parameter	Description
Wiegand26 ID	Parameter for RFID, using wiegand26 protocol
LLS Group3	LLS parameter group. Up to 14 LLS sensors
	using RS485. Enables parameters from 5 to 14.
CAN fuel consumption	instantaneous fuel consumption. Works only
	from 5.4 version
Axle group	Represents up to 5 axle parameters (depending on
	vehicle)
AddBlue	Diesel exhaust fluid level (CAN bus)
Previous digital inputs	Previous digital input value (I/O)
Acceleration max values	Special structure for driving quality evaluation
Mobileye data	Mobileye security system support (CAN bus)
1 Wire temp sensors	Several temperature sensors' ID and value
Tacho drivers ID	Driver's ID from tachograph
Tacho odometer	Odometer data from tachograph
Data cold temperatures	Temperatures from Datacold equipment
RPM limit timer	Measuring the duration of over RPM
Crash data	Measuring special accelerometer's parameters

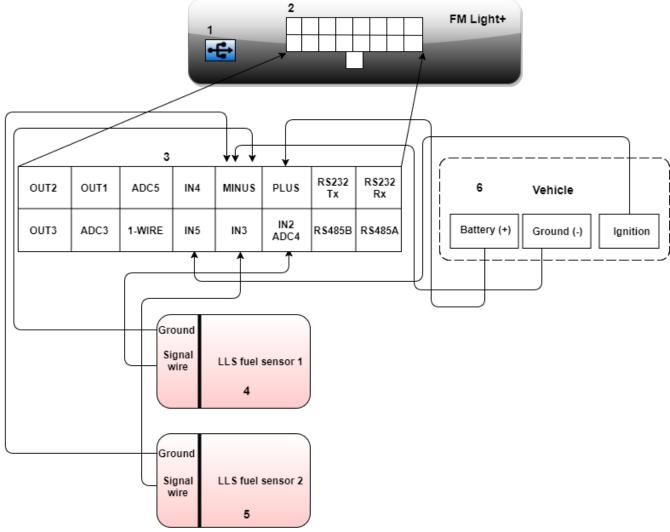
Table 6. Dataset Mask4

4. Annex 3. Connecting additional sensors. Wiring diagrams

1. LLS fuel sensor (one sensor, frequency mode)

Picture 3. FM Light+ – LLS interconnection

Table3. Short description table

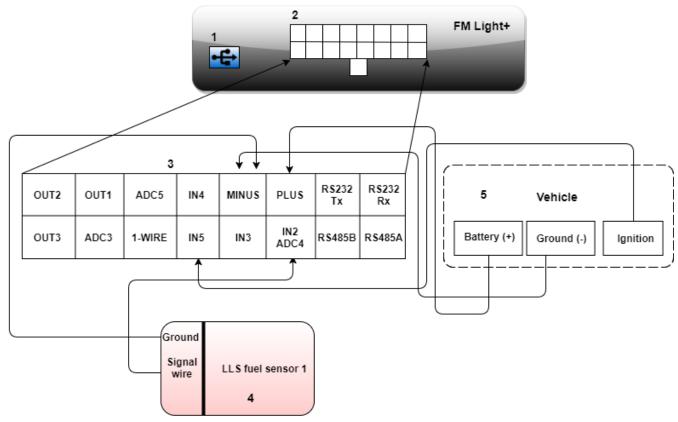

No.	Description
1	USB connection
2	Socket 2x8 pins
3	Socket 2x8 pins (No. 4) with each pins name
4	LLS fuel sensor
5	Wires which connects to vehicle

Note. When using frequency mode digital inputs must be enabled.

2. LLS fuel sensor (two sensors, frequency mode)

Picture 4. FM Light+ – LLS interconnection

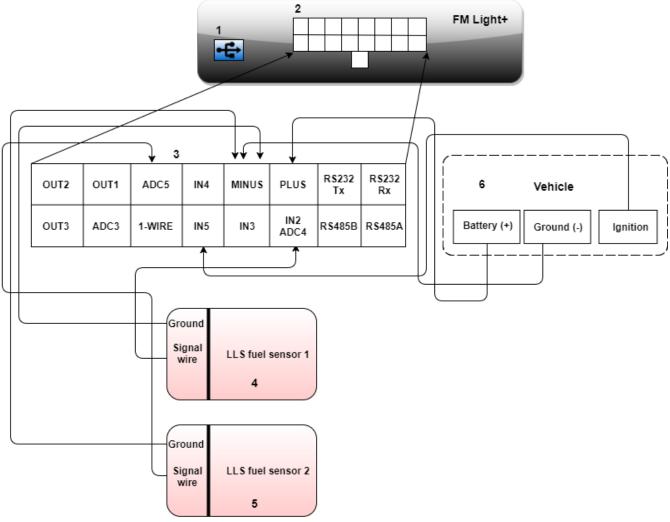
Table4. Short description table


No.	Description
1	USB connection
2	Socket 2x8 pins
3	Socket 2x8 pins (No. 4) with each pins name
4	LLS fuel sensor
5	LLS fuel sensor
6	Wires which connects to vehicle

Note. When using frequency mode digital inputs must be enabled.

3. LLS fuel sensor (one sensor, analog mode)

Picture 5. FM Light+ – LLS interconnection


Table5. Short description table

No.	Description
1	USB connection
2	Socket 2x8 pins
3	Socket 2x8 pins (No. 4) with each pins name
4	LLS fuel sensor
5	Wires which connects to vehicle

Note. When using analog mode, analog inputs must be enabled (ADC4 –LVL1).

4. LLS fuel sensor (two sensors, analog mode)

Picture 6. FM Light+ – LLS interconnection

Table6. Short description table

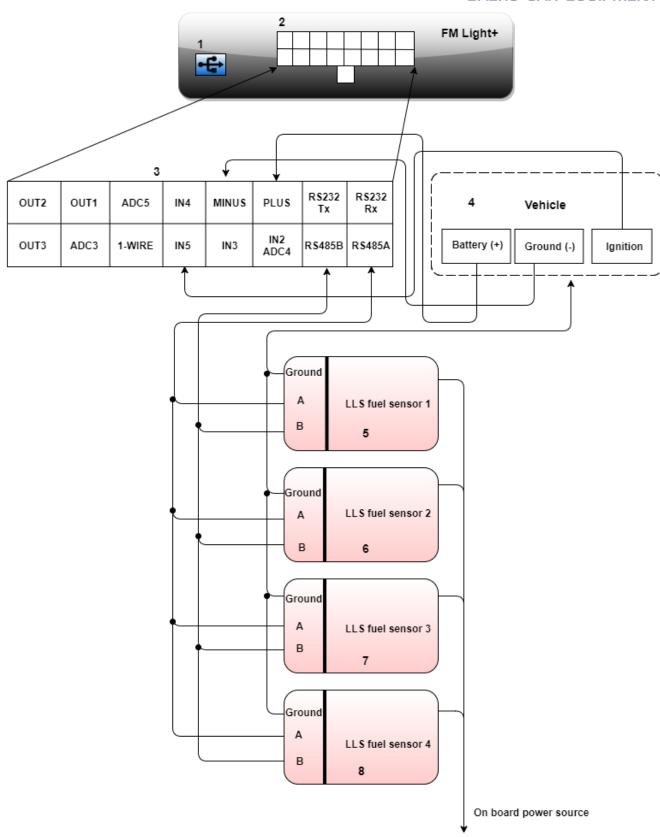
No.	Description
1	USB connection
2	Socket 2x8 pins
3	Socket 2x8 pins (No. 4) with each pins name
4	LLS fuel sensor
5	LLS fuel sensor
6	Wires which connects to vehicle

Note. When using analog mode, analog inputs must be enabled (ADC4-LVL1; ADC5-LVL2).

5. LLS fuel sensor (EIA 485/ RS485)

- You can connect up to fourteen sensors to one FM Light+ device.
- Speed of data transmission needs to be 19200 bits per second.
- Device reads data stored only at these addresses: address=1; address=2; address=3; address=4;

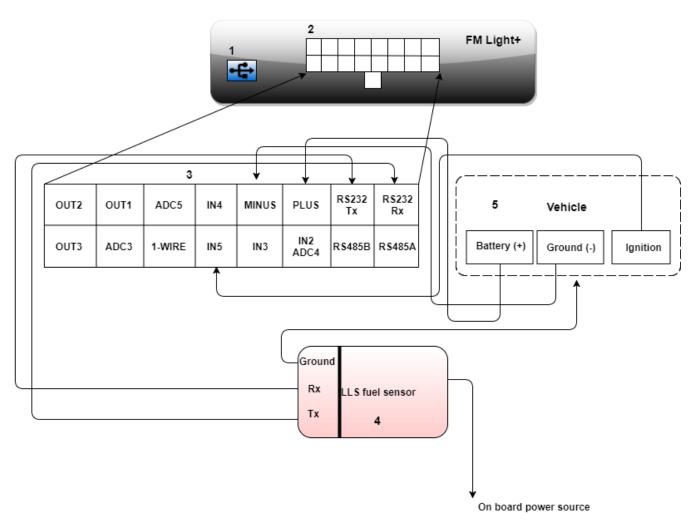
Table 7. Short description table


No.	Description
1	USB connection
2	Socket 2x8 pins
3	Socket 2x8 pins (No. 4) with each pins name
4	Wires which connects to vehicle
5	LLS fuel sensor 1
6	LLS fuel sensor 2
7	LLS fuel sensor 3
8	LLS fuel sensor 4

Note. Sensors are connected into sequential circuit. Number of sensors is optional (from 1 to 14).

1. Power source	3. RS232 (Tx)	5. EIA485 line (A)
2. Ground	4. RS232 (Rx)	6. EIA485 line (B)

Picture 7. LLS model 20160 pinout with output numbers

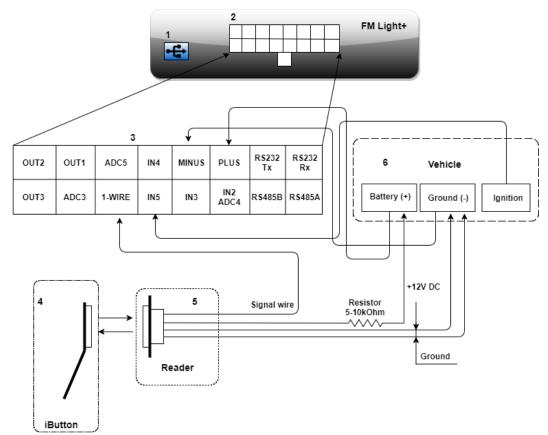

Picture 8. FM Light+ – LLS interconnection

6. LLS fuel sensor (RS232)

Table 8. Short description table

No.	Description
1	USB connection
2	Socket 2x8 pins
3	Socket 2x8 pins (No. 4) with each pins name
4	LLS fuel sensor
5	Wires which connects to vehicle

Picture 9. FM Light+ – LLS interconnection

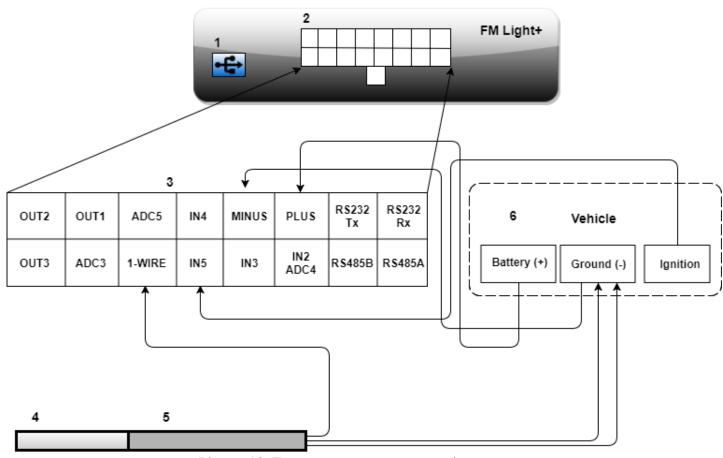


8. iButton

Table 11. Short description table

No.	Description
1	USB connection
2	Socket 2x8 pins
3	Socket 2x8 pins (No. 4) with each pins name
	(FM Light+)
4	iButton
5	Reader
6	Wires which connects to vehicle

- Resistor is needed
- Data is transmitted through one wire (1-WIRE protocol)
- Using different iButton, connection scheme can differ from the given below (Picture 10.)
- There is two ground wires from the reader


Picture 12. Ibutton connection

9. 1-WIRE temperature sensor

Table 12. Short description table

No.	Description
1	USB connection
2	Socket 2x8 pins
3	Socket 2x8 pins (No. 4) with each pins name
	(FM Light+)
4	Thermocouple
5	Wire shield
6	Wires which connects to vehicle

Picture 13. Temperature sensor connection

10. ES4 fuel level sensor connection via RS485

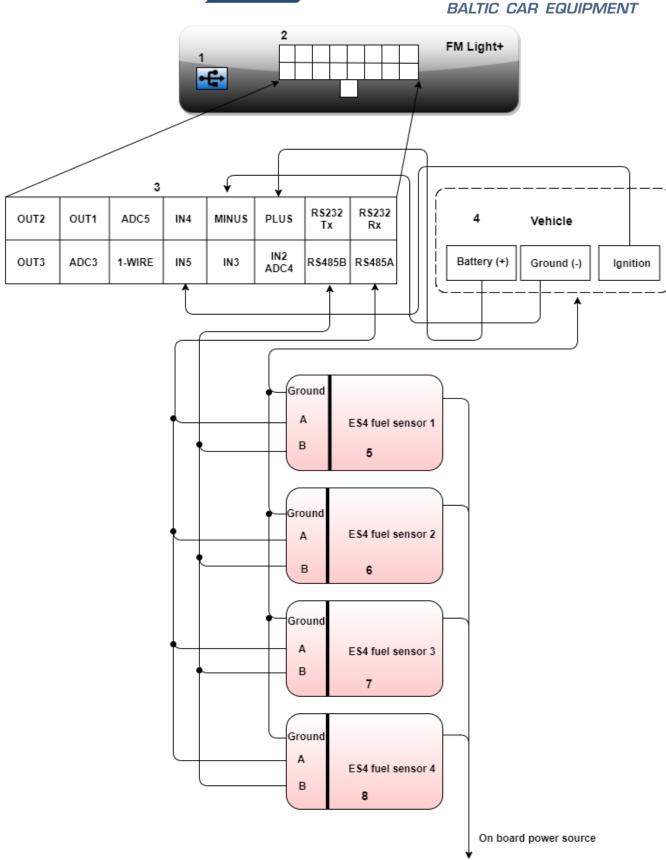
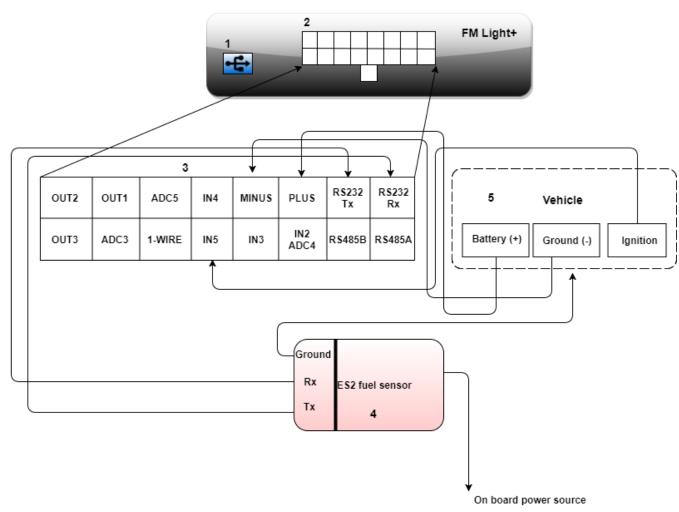

- You can connect up to four sensors to one FM Light+ device.
- Speed of data transmission needs to be 19200 bits per second.
- Device reads data stored only at these addresses: address=1; address=2; address=3; address=4;

Table 16. Short description table

No.	Description
1	USB connection
2	Socket 2x8 pins
3	Socket 2x8 pins (No. 4) with each pins name
4	Wires which connects to vehicle
5	ES4 fuel sensor 1
6	ES4 fuel sensor 2
7	ES4 fuel sensor 3
8	ES4 fuel sensor 4

Note. Sensors are connected into sequential circuit. Number of sensors is optional (from 1 to 4).


Picture 17. FM Light+ – ES4 interconnection

11. ES2 fuel level sensor connection via RS232 (one sensor)

Table 17. Short description table

No.	Description
1	USB connection
2	Socket 2x8 pins
3	Socket 2x8 pins (No. 4) with each pins name
4	ES2 fuel sensor
5	Wires which connects to vehicle

Picture 18. FM Light+ – ES2 interconnection